The JUNO and PINGU Experiments

- Neutrino Mixing, Oscillation & Remaining Questions
- The Precision IceCube Next-Generation Upgrade
- The Jiangmen Underground Neutrino Observatory
- Summary and Outlook

Discovery of Neutrino Oscillations

The Nobel Prize in Physics 2015

Photo © Takaaki Kajita Takaaki Kajita Prize share: 1/2

Photo: K. MacFarlane. Queen's University /SNOLAB Arthur B. McDonald Prize share: 1/2

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald *"for the discovery of neutrino oscillations, which shows that neutrinos have mass"*

DDMAA, Hsinchu, Dec 31, 2016

Neutrino 101: Neutrino and Its Discovery

• Neutrino proposed by Pauli to explain beta decay spectrum in 1930.

- First directly detected via Inverse Beta Decay by Reines and Cowan in 1956-1959 at the Savannah River Plant.
- Neutrino oscillation immediately proposed by Pontecorvo after the discovery

Neutrino 101: Neutrino Mixing and Oscillation

If Mass Eigenstates \neq Interaction Eigenstates \Rightarrow Mixing&Oscillating

 \Rightarrow Extended to 3 flavor mixing by Maki, Nakagawa and Sakata in 1962 Interaction Eigenstates \neq Interaction Eigenstates

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} V_{e1} & V_{e2} & V_{e3} \\ V_{\mu1} & V_{\mu2} & V_{\mu3} \\ V_{\tau1} & V_{\tau2} & V_{\tau3} \end{pmatrix} \bigwedge_{\Delta m^{2}} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \underset{\Delta m^{2}}{\overset{\nu_{3}}{=}} m_{1}^{2} - m_{1}^{2}$$
example
example
example

Flavor eigenstates PMNS Matrix Mass eigenstates

$$\Rightarrow P_{\nu_{\alpha} \to \nu_{\beta}} = 1 - 4 \sum_{i < j} |V_{\alpha j}|^2 |V_{\beta i}|^2 \sin^2 \frac{\Delta m_{ji}^2 L}{4E}$$

DDMAA, Hsinchu, Dec 31, 2016

Mixing Angles and Mass-Squared Splittings

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix}$$
 '98: Neutrino Oscillation discovered measuring: Δm^2_{atm} , $\sin^2 2\theta_{23}$
 $X \times \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix}$ > a decade long quest: '98 to '12 Measuring: $\Delta m^2_{atm}(\Delta m^2_{ee})$, θ_{13}
Daya Bay, RENO, Double Chooz

$$\times \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 '01-'02: Solar Sector Resolved SNO, KamLAND, SK measuring: Δm^2_{solar} , θ_{12}

$$\times \begin{pmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 Thoughts on Majorana Phases?
See Xing, Zhou, 16th Lomonosov Conference on Elementary Particle Physics, Moscow, Russia, 22 - 28 August 2013

Neutrino Mass Hierarchy

The solar neutrino data tell us that $\Delta m_{21}^2 \cos 2\theta_{12} > 0$. In the convention employed by us we have $\Delta m_{21}^2 > 0$. Correspondingly, in this convention one must have $\cos 2\theta_{12} > 0$.

MSW Effect tells m_2 from m_1 ; No clue for the sign of Δm^2_{32}

- The chance to observe Neutrinoless Double Beta Decay in the nextgeneration double beta decay experiments is greatly enhanced for an inverted MH and the Majorana nature of massive neutrinos.
- New techniques beyond the next generation are needed to explore the region covered by a normal MH.

Wei Wang/王為

How to Resolve the Neutrino Mass Hierarchy?

Matter Effect strength:

NH and IH with δ_{CP} and density

Appearance Signals of NOvA

 $>8\sigma$ observation of ν_e appearance

NOvA Preliminary Tries of MH, CP and Octant

What is Needed to Differentiate Mass Hierarchy?

- Resonance oscillation due to MSW effect in Earth for atm neutrinos
- Different mass hierarchies' resonance energies differ \Rightarrow tells mass hierarchy

IceCube and IceCube-DeepCore

IceCube Strings HQE DeepCore Strings DeepCore Infill Strings (Mix of HQE and normal DOMs)

DeepCore strings have 10 DOMs with a DOM-to-DOM spacing

normal DOMs)

Good for atmospheric oscillation parameters

- 8 strings, 40-75 m string spacing
- 7 m modules vertical-spacing

Threshold energy too high for mass hier attents with the strings

View

Ð

D

DDMAA, Hsinchu, Dec 31, 2016

DeepCore "Sees" Atmospheric Neutrino Oscillation

$$|\Delta m_{32}^2| = 2.50^{+0.18}_{-0.24} 10^{-3} \mathrm{eV}^2$$

$$\sin^2(\theta_{23}) = 0.52^{+0.12}_{-0.10}$$

Updates in 2016

- Improved simulation, systematics, and MC/Data agreement results.
- Improved: detector noise model, tighter cut for atm. muon rejection, flux prediction, PE charge calibration, etc.

Results competitive w/ SK

- Using only events with $E_{reco} < 56 \text{ GeV}$
- Fitting to data done in 2D space (E, θ)
 χ²/ndf = 52.4/56
- Observed \approx 5200 events in 953 days

Wei Wang/王為

IceCube-Gen2/PINGU

- → Need large statistics \Rightarrow IceCube
- → Need to lower the energy threshold \Rightarrow IceCube-Gen2/PINGU

PINGU/IceCube-Gen2 Timeline

- Phased approach phase I
- 7 additional strings in DeepCore
- 125 modules per string with additional calibration devices

IceCube-Gen2/PINGU Sensitivity to MH and Octant

Known θ_{13} Enables Neutrino Mass Hierarchy at Reactors

 Recall that reactor neutrinos helped pin down the solar sector

$$P_{\bar{\nu}_e \to \bar{\nu}_e} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$$

 Recall that Daya Bay measures the most precise atmospheric mass-squared splitting

Petcov&Piai, Phys. Lett. B533 (2002) 94-106

✓ Mass hierarchy is reflected in the survival spectrum

 $\sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})$

- ✓ Proportional to $sin^2 2\theta_{13}$
- ✓ Signal independent of the unknown CP phase and the value of θ₂₃

A Closer Look at the Reactor Neutrino Case

✓ Suitable baseline is ~60km

Jiangmen Underground Neutrino Observatory as an Example

Wei Wang/王為

Surface Facilities: Look into the Near Future.....

中国科学院江门中微子实验站(远期)

Challenges in Resolving MH using Reactor Sources

- Energy resolution: ~3%/sqrt(E)
 - Bad resolution leads to smeared spectrum and the MH signal practically disappears
- Energy scale uncertainty: <1%
 - Bad control of energy scale could lead to no answer, or even worse, a wrong answer
- Statistics (who doesn't like it?)
 - ~36GW thermal power, a 20kt detector plus precise muon tracking to get the best statistics
- Reactor distribution: <~0.5km
 - If too spread out, the signal could go away due to cancellation of different baselines
 - JUNO baseline differences are within half kilometer.

 $\Delta \chi^2 \left(\Delta m^2_{ee} \right)$

The Underground Detector System of JUNO

- A 55x48x27 m³ main experimental hall and other halls&tunnels for electronics, LS, water, power, refuge and other facility rooms.
- A 20kt spherical liquid scintillator detector
- The muon veto system combines a cylindrical water Cherenkov detector (~42.5m in diameter and depth) and the OPERA calorimeters on the top to provide tracking information

The First Conceptual Design of the Detector

- Muon detector
- Stainless steel tank or truss
- Water Cherenkov veto and radioactive
- Mineral oil or water buffer
- ~18000 20" PMTs coverage: ~80%

To reach $\sim 3\%/\sqrt{E}$ energy resolution,

- Obtain as many photons as possible → high light yield scintillator, high photocathode coverage, and high detection efficiency PMTs
- Keep the detector as uniform as possible → a spherical detector
- Keep the noise as low as possible
 → clean materials and quiet PMTs

	Daya Bay	BOREXINO	KamLAND	JUNO
Target Mass	20t	~300t	~1kt	~20kt
PE Collected	~160 PE/MeV	~500 PE/MeV	~250 PE/MeV	~1200 PE/MeV
Photocathode Coverage	~12%	~34%	~34%	~80%
Energy Resolution	~7.5%/√E	~5%/√E	~6%/√E	3%/√E
Energy Calibration	~1.5%	~1%	~2%	<1%

An unprecedented LS detector is under development for the JUNO project —> a great step in detector technology

The JUNO Detector Design

- Top Tracker
 - JUNO central detector design: a 35.4m diameter acrylic sphere holds the LS
 - Stainless truss, diameter 40.1m, provides mechanical supports to the acrylic sphere and the PMTs

CD support legs

Water Cherenkov detector with top tracker functions as the muon veto and • reconstruction system; Underwater electronics is the current baseline

PMT Arrangement and Readout

Calibration System

Putting Everything Together (Simulation)

- Assumptions: PMT QE 35%; LS light yield 10.4k photons/MeV and $L_{attn} = 20m @430nm$

- Simulation suggests
 that effective
 photocathode
 coverage can reach
 ~75% after
 considering the
 (current) support
 structures.
- A ~3%/√E energy resolution is plausible based on simulation.

The project is planning to start data taking 2020

- ~3-sigma if only a relative spectral measurement without external atmospheric masssquared splitting
- ~4-sigma with an external Δm^2 measured to ~1% level in v_{μ} beam oscillation experiments
 - ~1% in Δm² is reachable based on the combined T2K+NOvA analysis by

S.K. Agarwalla, S. Prakash, WW, arXiv:1312.1477

✓ Realistic reactor distributions considered
 ✓ 20kt valid target mass, 36GW reactor power, 6-year running
 ✓ 3% energy resolution and 1% energy scale uncertainty assumed

JUNO Precision Measurements Warranted

Global arXiv:1507.05613

	Δm_{21}^2	$ \Delta m^2_{31} $	$\sin^2 \theta_{12}$	$\sin^2 \theta_{13}$	$\sin^2 heta_{23}$
Dominant Exps.	KamLAND	MINOS	SNO	Daya Bay	SK/T2K
Individual 1σ	2.7% [121]	4.1% [123]	6.7% [109]	$6\% \ [122]$	$14\% \ [124, 125]$
Global 1σ	2.6%	2.7%	4.1%	5.0%	11%

Consistent conclusion from an independent study by A.B. Balantekin et al, Snowmass'13, arXiv:1307.7419

- Precision <1% measurements are warranted in a experiment like JUNO
 - Enable a future ~1% level PMNS unitarity test
 - Neutrinoless double beta decay needs precise θ_{12}

	Nominal	+ B2B (1%)	+ BG	+ EL (1%)	+ NL (1%)
$\sin^2 \theta_{12}$	0.54%	0.60%	0.62%	0.64%	0.67%
Δm_{21}^2	0.24%	0.27%	0.29%	0.44%	0.59%
$ \Delta m_{ee}^2 $	0.27%	0.31%	0.31%	0.35%	0.44%

JUNO: 100k evts arXiv:1507.05613

Summary and Outlook

- Exciting and steady progresses have been made in the past 20 years in neutrino experiments since Super-K turned on New physics beyond the Standard Model
- There are still unknowns in neutrino physics which are essential to the progresses in both theoretical and experimental fronts
- Atmospheric neutrinos and reactor neutrinos provide great potential in resolving the neutrino mass hierarchy, and they are complementary and share a very similar schedule
 - IceCube-Gen2/PINGU phase-I is carrying out R&D
 - JUNO are under construction
- Unanswered questions in neutrino physics might hold the keys to many profound questions Stay tuned and expect unexpected!

Why is the Δm^2_{ee} Measurement Interesting?

 $P(\bar{\nu_e} \to \bar{\nu_e}) = 1 - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$ $= 1 - 2s_{13}^2c_{13}^2 - 4c_{13}^4s_{12}^2c_{12}^2\sin^2\Delta_{21} + 2s_{13}^2c_{13}^2\sqrt{1 - 4s_{12}^2c_{12}^2\sin^2\Delta_{21}\cos(2\Delta_{32}\pm\phi)}$

$$P_{\nu_{\mu} \to \nu_{\mu}} = 1 - P_{21}^{\mu} - \cos^2 \theta_{13} \sin^2 2\theta_{23} \sin^2 \frac{(\Delta m_{32}^2 \pm \phi)L}{4E}$$

Because it could, potentially, tell MH!

FIG. 6: The dependence of effective mass-squared difference $\Delta m_{ee\phi}^2$ (solid line) and $\Delta m_{\mu\mu\phi}^2$ (dotted line) w.r.t. the value of δ_{CP} for $\bar{\nu}_e$ and ν_{μ} disappearance measurements, respectively.

But it is too hard of a job from this approach.

TABLE II: Simple fitting for mass splitting Δm_{32}^2 and Δm_{31}^2 using Eqs. (11), (12), (16), and (19) in NH (or (20) in IH) as constraints. The corresponding 2-tailed p-values increase from that in Table I. Here the slight preference for normal hierarchy remains.

	Fit in normal hierarchy	Fit in inverted hierarchy
Δm_{32}^2	$(2.46 \pm 0.07) \times 10^{-3} \text{ eV}^2$	$-(2.51\pm0.07)\times10^{-3}~{\rm eV}^2$
Δm_{31}^2	$(2.53 \pm 0.07) \times 10^{-3} \text{ eV}^2$	$-(2.44 \pm 0.07) \times 10^{-3} \text{ eV}^2$
χ^2/DoF	0.96/2	1.21/2
p-value	62%	55%

 $(/10^{-3} eV^2)$

2.60

Wei Wang/王為

36

Details of the JUNO Central Detector

Stainless Steel Truss Inner Diameter:40.1m

Acrylic Sphere Inner Diameter: 35.4m

PMT Arrangement ~17,000 (20")+~34,000 (3")

Stainless steel truss

- ID: Ø40.1m
- OD: Ø41.1m
- Weight: ~600t

Acrylic sphere

- ID: Ø35.4m
- Thickness:120mm
- Weight: ~600t

20" PMT array

- Distance to LS: ~1.6m
- Gap: ~250mm (extremely challenging)

More Light: PMT and Photocathode Coverage

- Large PMTs: 20" MCP-PMT, ~75%
- Large PMTs: 20" SBA Hamamatsu, ~25%
- Small PMTs: 3" PMTs
 - ➡ to further increase the photocathode coverage
 - to provide a semi-independent calorimetry system for timing
 - to extend energy dynamic range to avoid saturation, important for high energy events and cosmic muons

Complementary Roles by SPMTs and LPMTs

Veto System Considerations and Designs

- Veto is not just a veto. Besides radioactive background shielding, we also need tracking information to better understand and remove cosmogenic backgrounds
 - The main body is the water Cherenkov detector
 - OPERA scintillator calorimeters will be moved to JUNO as the Top Tracker (TT)
- Earth magnetic field compensation coils are being designed together with the veto system design
- Radon removal, control and monitoring are under study